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Explicit spatial analysis of infectious disease processes recognizes that host–pathogen
interactions occur in specific locations at specific times and that often the nature, direction,
intensity and outcome of these interactions depend upon the particular location and identity
of both host and pathogen. Spatial context and geographical landscape contribute to the
probability of initial disease establishment, direction and velocity of disease spread, the
genetic organization of resistance and susceptibility, and the design of appropriate control
and management strategies. In this paper, we review the manner in which the physical
organization of the landscape has been shown to influence the population dynamics and
spatial genetic structure of host–pathogen interactions, and how we might incorporate
landscape architecture into spatially explicit population models of the infectious disease
process to increase our ability to predict patterns of disease occurrence and optimally design
vaccination and control policies.
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1. INTRODUCTION

The dependence of infectious disease processes on their
specific spatial and ecological context has been receiv-
ing considerable recent attention. Explicit spatial
analysis of infectious disease processes recognizes that
host–pathogen interactions occur in specific locations
at specific times and that often the nature, direction,
intensity and outcome of specific interactions depend
upon the specific location and identity of both host and
pathogen (Real & McElhany 1996; Hess et al. 2001).
The recognition of significant forms of spatial hetero-
geneity over the ecological landscape that might
influence disease processes has contributed to our
growing recognition of the need to anchor infectious
disease processes within their explicit spatial context
(Ostfeld et al. 2005). Spatial heterogeneities can take
either of two forms both of which can influence
underlying dynamics but affecting populations through
vastly different mechanisms.

First, individuals in the population may aggregate
spatially over a uniform landscape or exhibit non-
random interactions due to non-random forms of social
interaction, limited dispersal or other mechanism that
increases local interactions at the expense of global
connectedness. In these instances, the structure of the
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landscape does not dictate the spatial organization of
the population. Rather, that organization is an
epiphenomenon of the intrinsic population process.
For example, sexually transmitted diseases in human
populations are often both non-random and spatially
aggregated due to social processes (e.g. shooting
galleries where needle exchange is common, sex worker
concentration in urban centres, etc.). Under such
circumstances, the environment can be ignored for
increased attention to the details of host identity and
social processes.

On the other hand, environments themselves can act
as the principal organizers for spatial processes, some-
times acting on a rather homogeneous host or pathogen
population or at least within a well-mixed population
that assorts into different spatial locations due to
environmental influences. A classic example would be
the asymmetry of measles spread from large cities to
small cities and towns due to the asymmetry in the
number of susceptible hosts (Grenfell et al. 2001).

The distinction between spatial aggregates formed
through social and behavioural interactions versus
environmental heterogeneity has been well recognized
in plant–pathogen systems. In the agricultural litera-
ture, these two forms of infectious disease process
have been designated as either ‘truly contagious’ or
‘apparently contagious’ processes (Campbell & Madden
1990). True contagion is a focal point process where an
epidemic begins by infection of a few, often randomly
J. R. Soc. Interface (2007) 4, 935–948
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spaced, individuals. Spatial aggregates (i.e. patches)
develop as foci around these initially infected individ-
uals, because the limited dispersal capabilities of the
pathogen generate regions of high disease prevalence
around the sites of initial disease occurrence (Zadoks &
Vandenbosch 1994). Spatial aggregates could also
emerge where there are heterogeneous degrees of
connectivity among individuals within a distributed
network of interactions (e.g. where some individuals are
‘super-spreaders’ or ‘super-shedders’) and these hetero-
geneous patterns of connectedness may be quite
independent of the environmental structure (e.g. they
may be the properties of the individual host genotype).

Apparent contagion, on the other hand, assumes
that the pathogen or host is uniformly dispersed and
randomly connected to individuals across the networks.
Spatial aggregates generate from the inherent hetero-
geneity in the environment that acts as a selective sieve
on the establishment and productivity of local
interactions. For example, wind-dispersed fungal
pathogens of plants can be widely distributed but
may establish only among patches of plants where the
temperature and humidity are favourable to fungal
spore development. Both true and apparent contagion
will generate spatially heterogeneous populations of
hosts and pathogen.

Apparent and true contagious processes do not
exhaust the possible influences of environmental
heterogeneity on disease process, especially patterns
of spread. In plant systems (especially agricultural
crops), most discussion is restricted to deciphering the
relative contributions of these two types of contagious
interaction in generating spatial heterogeneity in
disease incidence. Most probably, this is because
plants do not move, so the host population distri-
bution is considered a fixed property of the environ-
ment and pathogens distribute themselves over the
fixed population of hosts. Animal populations,
obviously, are quite mobile and the movement
patterns of individuals may reflect spatial hetero-
geneity in the environment giving rise to spatial
heterogeneity in patterns of incidence. As a general
rule, whenever environment influences the distri-
bution or movement of host individuals, this has the
potential to affect transmission dynamics and
pathogen population structure. Physical attributes of
the environment may restrict or enhance particular
trajectories of movement-effecting patterns of disease
spread, establishment, gene exchange and population
connectivity (or its converse, isolation). In this paper,
we review the evidence for a direct effect of the
physical structure of the landscape on patterns of
disease dynamics and genetics, and how landscape
structure has been incorporated into model architec-
tures. We focus on infectious diseases of wild animal
and plant populations, for which the influence of
environmental heterogeneity is often most obvious. As
examples, we especially draw on studies of wildlife
rabies, in part owing to our own experience with this
system, but also owing to the historic role that it
played in driving the development of analytical tools
for modelling disease dynamics in heterogeneous
landscapes.
J. R. Soc. Interface (2007)
2. DISEASE DYNAMICS INFLUENCED BY
PHYSICAL HETEROGENEITIES

The system we have examined most closely for the
effects of spatial heterogeneity on the dynamics of
epidemic expansion has been the ongoing rabies virus
epizootic within raccoon populations in the eastern
USA (Lucey et al. 2002; Russell et al. 2004, 2005; Smith
et al. 2002, 2005). We suspect that this epizootic was
initiated in the Mid-Atlantic region by the inter-state
translocation of raccoons incubating rabies from an
established focus of raccoon rabies in the southeastern
USA (Nettles et al. 1979; Smith et al. 1984). Since the
mid-1970s, this raccoon-adapted variant of rabies virus
has spread north to Maine and Ontario, Canada and
west to Ohio, causing one of the most intensive (and
extensive) outbreaks of animal rabies ever recorded.
The magnitude of this epizootic was enhanced by the
spread of virus through naive raccoon populations
of very high density, often in states that had not
experienced rabies in terrestrial carnivores for decades
(Rupprecht & Smith 1994).

Since the mid-1970s, state public health offices have
reported wildlife rabies incidence monthly by county (or
in some cases, township) to the US Centers for Disease
Control and Prevention. We have used these reports to
construct a detailed account of the spatial and temporal
dynamics of rabies during the course of its epizootic
expansion in the US (figure 1) and to construct spatially
explicit predictive models for rabies spread that incor-
porate heterogeneities in the epizootic landscape.

We developed a discrete-event simulator (Smith
et al. 2002) for which the infection of each township (i.e.
rabies detected) occurred at a unique point in time. An
infected township, i, infects its adjacent neighbour, j, at
a rate lij. In addition, a township jmay become infected
owing to translocation of rabid raccoons at a rate mj.
Heterogeneity was incorporated into the model by
allowing the local rates from the neighbours [lij] and the
rate of translocation [mj] to be functions of local habitat
characteristics. A schematic of the spatial model and
the execution algorithm is presented in figure 2.

We compared the predictive power of alternative
models where each model represented a different
weighted combination of effects due to spatial hetero-
geneities corresponding to the presence or absence of
rivers, spatial variation in human population density
and variation in global transport of infected animals.
Our stochastic spatial simulator was able to mimic the
spread of rabies only when environmental hetero-
geneity was incorporated explicitly into the model.
The best-fit model (figure 3) suggested that slower local
spread of rabies was strongly associated with river
crossings; the global spread by translocation was
relatively frequent; and human population density
had very little effect on the local spread of rabies. In a
separate study, we demonstrated how human popu-
lation density influenced the magnitude of raccoon
rabies epizootics but not the time to first detection
(Childs et al. 2001).

Townships separated by rivers had a sevenfold
reduction in local transmission. All of the models that
incorporated slowing at rivers had a better fit than the
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alternative models without rivers. Even though local
transmission accounted for most transmission, long-
distance translocation was important. Of the 159
townships not on the western border of Connecticut,
21 townships (13%) recorded their first case of raccoon
rabies when no adjacent townships were infected. All of
the outlying townships (figure 3) identified by our
model became infected with rabies earlier than pre-
dicted, caused in most circumstances by probable long-
distance translocation.

To assess the consequences of this spatial hetero-
geneity on the overall dynamics of rabies, we further
simulated the epizooticwith andwithout rivers andwith
andwithout long-distance translocation. Rivers delayed
the appearance in southeasternConnecticut by approxi-
mately 16 months (figure 4) without translocation and
by 11 months with translocation (Lucey et al. 2002;
Smith et al. 2002). Environmental heterogeneities have
played a significant role in determining the rate and
direction of epizootic expansion of this important
disease. Qualitative observations supporting the effect
of rivers as barriers have also beenmade for the spread of
fox rabies in Western Europe (Sayers et al. 1985).

Large rivers probably represent movement barriers
for most non-volant animals and thus would be
generally expected to temporarily reduce the velocity
of infection waves in terrestrial host species. This
assumes, however, that the river is situated perpen-
dicular to the general direction of spread, as was the
case in the previous example of raccoon rabies in
Connecticut. In other cases, disease spread may
actually be the fastest alongside rivers, essentially
increasing habitat connectivity from the parasite
perspective (Russell et al. 2004; Smith et al. 2005).
Such an accelerating effect of rivers was seen, for
example, during the initial spread of myxoma virus
among feral rabbits in Australia (Ratcliffe et al. 1952).
What accounted for this river effect is not well
understood. While earlier work attributed it to a higher
density of mosquito vectors in riparian areas (Ratcliffe
et al. 1952), subsequent data indicated that the rate of
myxoma spread may not be related to vector abun-
dance (Le Brereton 1953). Faster disease spread along
rivers may be anticipated if host or vector species are
specifically associated with riparian habitat. However,
many animal species use riparian corridors specifically
for dispersal (Harrison 1992). To the extent that
regular patterns of animal dispersal also affect pathogen
transmission, it is therefore conceivable that rivers play
a more widespread role in facilitating disease spread in
natural landscapes.

The distribution of rivers or streams will also have an
obvious effect on the transmission dynamics of patho-
gens that are water-borne. The fungal root pathogen
Phytophthora lateralis, for example, is dispersed in
flowing water, which allows it to infect its host, a
riparian tree species. On a landscape scale, this leads to
predictable dynamics regarding the general direction of
spread, because new infections require transmission
from upstream sources (Jules et al. 2002). Interestingly,
this directional component does not explain which trees
are at risk at smaller spatial scales: within a site, the
speed of invasion does not depend on distance to
J. R. Soc. Interface (2007)
already infected trees upstream but on other host
characteristics such as age and distance from the
stream (Kauffman & Jules 2006). This illustrates the
importance of scale for evaluating which sources of
heterogeneity significantly affect the overall dynamics
and rates of spread. Similarly, the barrier effect of rivers
on rabies spread discussed above is most obvious at the
local (i.e. township) level and when considering
monthly intervals. However, when calculating annual
spread rates across the entire Mid-Atlantic region, the
effect of rivers on the rate of spatial invasion largely
disappears (Biek et al. in press).

Roads represent another form of linear landscape
element that can affect disease spread by connecting
disjunct habitat patches. In the just-mentioned tree
pathogen P. lateralis, spores can travel in the mud that
sticks to vehicle tyres and this source of infection was
found to account for most cases in which new drainages
became invaded. In addition, trees along streams that
were not crossed by a road had a significantly lower
probability of being infected (Jules et al. 2002). Since
roads are often lined by specific types of vegetation,
disease vector or reservoir species associated with these
habitatsmay be able to disperse and increase their range
along motorways. The rodent species acting as the main
reservoir for the zoonotic Junin virus in Argentina, for
example, appears frequently to live alongside roads
(Mills et al. 1992), which may, therefore, allow the
disease to increase its geographical range.

Birds are naturally less constrained in terms of their
movement, and thus their ability to spread diseases, by
the physical environment. Still, Hosseini et al. (2006)
found that elevation had a limiting effect on the spread
of Mycoplasma gallisepticum, an emerging avian
pathogen of house finches in eastern North America,
apparently reflecting a preference of the birds for
habitats at lower altitudes. Seasonal movements of
migratory birds are another reason why avian diseases
may exhibit spatially heterogeneous patterns of spread.
Spring and autumn migration had a profound effect in
the case of the M. gallisepticum house finch system
(Hosseini et al. 2006) and considerable research effort is
currently directed at understanding how flight
pathways of migratory birds can help to predict the
global spread of the pathogenic H5N1 strain of avian
influenza (Kilpatrick et al. 2006).

Certain landscape features may only play a seasonal
role in infection dynamics. This can apply, for example,
to localized resources that are only available for certain
parts of the year. During those times, however, the
probability of transmission may be greatly enhanced.
Recent data documenting Ebola virus outbreaks among
lowland gorilla populations strongly point towards
transmission among social groups (Bermejo et al.
2006). This has been puzzling because infection requires
close contact, which rarely occurs among different
gorilla groups. Primatologists therefore suspect that
seasonally fruiting trees, which are visited by many
groups simultaneously, could represent ‘transmission
islands’ for the virus (Caillaud et al. 2006). Bird feeders
are thought to play a similar role for house finches
becoming infected with M. gallisepticum, because
contact among birds that is sufficiently close to allow

http://rsif.royalsocietypublishing.org/


Figure 2. Schematic of the stochastic spatial simulator and the
execution algorithm used to model the spatial dynamics of
rabies virus spread. Each geo-political unit (e.g. township,
county, city, etc.) is connected locally (lij) and globally (m).
These transmission rates can be variables and determined by
habitat and population characteristics (after Smith et al. 2002).
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Figure 1. The spread of epizootic rabies among raccoons in the
Mid-Atlantic region and northeastern United States from a
focus (epizootic origin) at the Virginia (VA)/West Virginia
(WVA) border illustrated at 5-year intervals from 1980
through 1995. Cells correspond to individual counties within
states with violet corresponding to uninfected counties,
yellow corresponding to already infected counties and red
corresponding to counties that became infected during that
year. State abbreviations are ME, Maine; MA, Massachu-
setts; NY, New York; CT, Connecticut; PA, Pennsylvania;
and NC, North Carolina. Data were collected from state
public health office assessments of the monthly cases of animal
rabies reported annually to the Centers for Disease Control
and Prevention.
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Figure 3. The data and output from the parameterized
stochastic spatial simulator developed to predict the spatial
spread of raccoon rabies across the state of Connecticut
plotting the expected time to first appearance of rabies in
raccoons based on stochastic simulation versus the observed
time to first appearance of rabies across the 169 townships in
Connecticut. Expected time to first appearance was estab-
lished using the best-fit stochastic simulator and incorporated
both heterogeneity in local transmission and long-distance
translocation of rabies. Rivers induced a sevenfold reduction
in rates of local transmission. Four outlier townships had
observed times to first appearance of rabies significantly
earlier than that predicted by the model. One township in
particular, Putnam, was earlier than all others and is the site
of a major trash incinerator for the east coast. Putnammay be
experiencing considerable long-distance translocation of
animals through the movement of trucks to the incinerator
site (Smith et al. 2002).
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for transmission is otherwise rare (Dhondt et al. 2005).
Given that localized resources lead to seasonal aggrega-
tion in many species (e.g. waterholes in arid systems,
hibernation sites, etc.), the phenomenon may apply to a
wide range of parasite–host systems.
J. R. Soc. Interface (2007)
3. EFFECTS OF HETEROGENEOUS LANDSCAPES
ON THE POPULATION GENETIC STRUCTURE
OF PARASITES

Despite a growing interest in landscape genetics, i.e. the
ways in which geographical and environmental factors
affect the population genetic structure of species
(Manel et al. 2003), examples focusing on infectious
organisms in this context are still limited. A number of
recent studies have examined the evolutionary history
of parasites at the intraspecies level but these studies
are usually concerned with biogeographic patterns at
larger spatial scales (Nieberding et al. 2004; Criscione &
Blouin 2007). Even fewer studies have considered
how the population genetic structure of parasites is
influenced by the process of spatially heterogeneous
spread. Recent advances in related areas of evolution-
ary research (Wegmann et al. 2006) point to some
interesting possibilities in this regard.

Generally, any landscape feature that enhances or
reduces the probability of transmission has the
potential to also affect the spatial genetic structure of
the pathogen. During the process of invasion, one could
predict, for example, that transmission barriers act as
random ‘filters’ on parasite genotypes, in that only a
subset of them will be able to cross the barrier. Indeed,

http://rsif.royalsocietypublishing.org/
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Figure 4. A schematic map of the differential between time to
first appearance across townships in Connecticut when the
epidemic was simulated with and without rivers. The size of
each grey square corresponds to the difference between the
time of first appearance at the country centroid of that
location when simulations were run with and without the
presence of three rivers. The three black lines correspond to
the locations of the three major rivers in Connecticut (i.e. the
Housatonic, Connecticut and Thames rivers). Results from
the simulations suggest that a sevenfold reduction in local
transmission across rivers leads to a 16-month delay in the
expected appearance of rabies in the southeast corner of
Connecticut. The expected delay is reduced to 11 months
when long-distance translocation is added to the simulations
(after Smith et al. 2002).
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such a restriction in genetic diversity, followed by rapid
expansion, was seen in raccoon rabies virus in Ohio
that had breached a vaccine corridor (L. A. Real 2006,
unpublished data). Until then, the vaccine corridor had
halted the westward spread of the disease for several
years and the data indicate that a single infected
individual introducing the virus to the opposite side of
the barrier probably caused the outbreak. Such events
are comparable to genetic founder effects occurring
during island colonization (Nieberding et al. 2006).

A similar phenomenon may explain the surprisingly
low genetic divergence among all Ebolavirus Zaire
isolates found during recent outbreaks in Gabon and
the Republic of Congo (Walsh et al. 2005). All
sequences from these outbreaks (2001–2003) could be
traced back to a common ancestor that was found in
1996 near the town of Booue, just south of the Ogooue
River, one of the largest waterways in the region. All
previous outbreaks up to that point had been observed
on the opposite side of that river (Lahm et al. 2007).
Furthermore, timing and location of subsequent out-
breaks, which took place several hundred kilometres
further east, suggested that the virus had been
spreading in that direction at a rate of approximately
50 km per year. The strength of the correlation between
genetic and spatial distances was maximized when the
putative pathway of viral spread was routed through
Booue. Together, these results strongly point to a
scenario in which the virus was able to cross the Ogooue
River near Booue, causing a strong genetic bottleneck,
followed by subsequent diversification as the virus
invaded the region to the east (Walsh et al. 2005).
J. R. Soc. Interface (2007)
On the other end of the spectrum, habitat types
associated with increased opportunities for transmission
can leave their own characteristic genetic signatures,
indicative of demographic expansion. Especially in RNA
viruses, for which population dynamics and the accumu-
lation of mutational changes take place at similar
temporal scales, changes in population growth rates
over the course of spatial invasion can be discerned from
molecular sequence data using coalescent approaches
(Pybus et al. 2000; Drummond et al. 2005). During the
recent incursion of raccoon rabies virus into the Mid-
Atlantic region, thehighestvelocities of viral spreadwere
seen in themost urbanized areas that support some of the
highest raccoon densities and also experienced the
largest outbreaks (Childs et al. 2001). This demographic
expansion was also detectable in viral sequence data, in
that invasion of these areas coincidedwith the fastest rise
in the number of infections, as estimated from the
genealogical pattern of genetic diversification in thevirus
(Biek et al. in press). Considering these examples, it is
possible that molecular data, given appropriate levels of
sampling, could in fact be used to assess the relative
permeability of different habitats and landscape
elements to disease spread. Especially in combination
with fine-grained spatial and temporal data, such
approaches could make exciting contributions to our
understanding of landscape epidemiology.

Landscape heterogeneities will affect the population
genetic structure not only during invasion but also once
a parasite has become endemic, i.e. once it has
established itself within a geographical area. However,
it may often remain difficult to discern how specific
landscape elements influence the partitioning of genetic
variation in space, given that the existence of spatial
genetic structure may be strongly dependent on
historical factors. In the case of rabies spread into
raccoon populations in Ontario during the 1950s, rabies
virus entered the southern Ontario peninsula almost
simultaneously from two different directions, with each
wave representing a genetically distinct lineage. The
two waves met eventually and were brought to a
mutual halt, presumably due to limited opportunities
for spread into raccoon populations already affected by
rabies and thus partly depleted of susceptibles. Even
five decades later, this contact zone is still visible as a
distinct boundary between the two viral clades, each
representing the descendents of a different lineage of
invaders (Nadin-Davis et al. 1999; Real et al. 2005;
figure 5). The boundary approximately corresponds to
the edge of the Canadian Shield, and thus a change
in landscape physiognomy may be a significant
organizer of this genetic landscape. However, some
caution is called for since similar boundaries are often
seen in many areas recently invaded by wildlife rabies
and often appear to persist in the absence of any
obvious landscape discontinuities (R. Biek & L. A. Real
2007, unpublished data).

Another example of historical processes, rather than
landscape attributes, facilitating spatial genetic pat-
terns involves a feline lentivirus that infects cougars
(Puma concolor) as its only host (Biek et al. 2006).
Despite cougar host populations being continuously
distributed, highly mobile and without much genetic
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Figure 5. (a) Map of southern Ontario with a superimposed geographical cluster analysis of 20 different G-gene sequence types
identified from 83 fox rabies virus variant samples with known geographical coordinates. (b) Maximum likelihood tree based on
1572 bp G-gene nucleotide sequence of fox rabies virus variant over southern Ontario (Real et al. 2005).
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structure in a Rocky Mountain study area, viral
genotypes isolated from cougars fell into distinct clades
with strong spatial clustering (figure 6). Moreover, the
genetic data provided evidence for a recent demographic
J. R. Soc. Interface (2007)
increase in viral populations as well as a positive
relationship between the age of a clade ancestor and
the size of the geographical area that clade occupies,
suggesting that viral groups are currently expanding
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their respective range. The idea of recent expansion was
consistent with data showing that cougar populations
had only recently started to rebound from a severe
demographic bottleneck that presumably had also
temporarily restricted the distribution of viral geno-
types on the landscape (Biek et al. 2006).

The previous examples illustrate the challenge of
separating the effect of the physical landscape from
other factors, including temporal fluctuations of
pathogen and host populations, when assessing how
parasite populations are genetically structured in
space. As a further complicating factor, spatial genetic
structure can arise even in completely homogeneous
landscapes as a product of spatial autocorrelation,
especially if transmission occurs predominantly at the
local scale. Under such circumstances, genetic and
spatial distances will be positively correlated, resulting
in a spatial genetic gradient generally referred to as
isolation-by-distance. In fact, isolation-by-distance will
often provide the appropriate null model against which
any evidence for landscape genetic effects should be
tested (Epperson 2003).

Genetic sequence data that permit the use of
genealogical methods provide the opportunity to test
for phylogeographic structure, meaning the existence of
distinct genetic clades with little or no geographical
overlap (Avise 2000). The assumption is that these
boundaries between clade distributions do not occur
at random locations but correspond to features in
the landscape (e.g. rivers or mountain ranges) that
significantly restrict gene flow. Unfortunately, just as
the spatial clustering of genotypes mentioned before,
spatial discontinuities in genealogies can emerge even
without physical barriers to gene flow, making it
difficult to determine to what extent phylogeographic
patterns are really attributable to the landscape,
especially if such interpretations are done post hoc.
Simulation studies indicate that this problem particu-
larly arises for populations of small size and with
limited dispersal (Irwin 2002). This suggests that
‘spontaneous’ phylogeographic structure most probably
arises in parasite systems where (i) the parasite’s local
effective population size is low, for example, because the
fraction of infected hosts or individual parasites within
a host that actually contribute to future infections is
small (Criscione & Blouin 2005; Lloyd-Smith et al.
2005); (ii) the parasite has no life stages that remain
infectious outside infected host, making it completely
reliant on its host for dispersal; and (iii) host dispersal is
limited to short distances (Criscione & Blouin 2005).
Ironically, by increasing the effect of genetic drift acting
at small spatial scales, these are the very same
characteristics that also increase the chance of detect-
ing barriers to parasite gene flow in the first place. For
parasites that meet these criteria, evidence for phylo-
geographic structure should be examined very carefully
and, as in any biogeographic study using genetics, data
should ideally be derived from multiple independent
loci. Since stochastic sorting events will affect the
genealogy of each locus differently (Rosenberg &
Nordborg 2002), congruent results for several loci
provide strong support that a phylogeographic break
indeed represents a zone across which gene flow is
J. R. Soc. Interface (2007)
limited. However, a fair number of parasites undergo
asexual reproduction, which means that genetic data
will essentially represent a single locus. In such cases,
additional insights may be gained from examining
molecular data from the host for genetic discontinuities
in the suspected geographical areas (Nieberding et al.
2004; Criscione & Blouin 2007). In addition, it may be
possible to find other supporting evidence that genetic
structure is landscape-induced, for example, if the
putative boundary also marks a significant change in
disease prevalence.

Understanding the genetic structure of parasite
populations on natural landscapes is important not
only because it can reveal important aspects of disease
ecology and epidemiology but also because it provides a
prerequisite for local adaptation. Landscapes may affect
the process of coevolution among parasites and hosts in
two major ways. First, as outlined above, the physical
environment can determine relative amounts of gene
flow among populations. Theoretical work has demon-
strated the profound effect of parasite and host gene flow
on the process of local adaptation and the evolution of
virulence (Boots & Sasaki 1999; Lively 1999; Gandon
2002). The landscape determines the levels of host gene
flow both in terms of relative permeability to dispersal
and in the relative number of dispersers produced as a
function of local habitat quality. Second, spatial
heterogeneitymay come into play in the formof different
environmental conditions acting as selective forces on
host and parasite populations.
4. SOME APPROACHES TO MODELLING
DISEASE DYNAMICS WITH PHYSICAL
HETEROGENEITY

Our analysis of rabies epidemiology in eastern North
America relied on the development of an explicit spatial
model for disease dynamics that incorporated physical
heterogeneity in the environment (e.g. Smith et al.
2002; Russel et al. 2004). While our approach used
interactive networks, other theoreticians have
exploited alternative model structures to examine the
effects of physical heterogeneities on patterns of
emergence and spread. Broadly speaking, model
architectures fall into two alternatives: those models
that incorporate space and heterogeneity explicitly
(e.g. reaction–diffusion systems and spatially defined
networks) versus those that treat space as an implicit
function of population substructure but where the
actual spatial coordinates are not defined (e.g. much of
metapopulation theory applied to infectious diseases
and almost all of the current work on networks, where
nodes of the network are not spatially located).
4.1. Reaction–diffusion in heterogeneous
environments

The earliest approaches to spatial modelling of infec-
tious disease (both with and without heterogeneity)
relied on extensions of the Fisher–Skellam reaction–
diffusion equations (Fisher 1937; Skellam 1951). Noble
(1974) used a diffusion model to explain the spread of
bubonic plague through Europe during the 1347–1350
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period of the Black Death using a modified form of the
Kermack–McKendrick (1927) model

vSðx; tÞ
vt

ZD
v2S

vx2
KbSI ;

vI ðx; tÞ
vt

ZD
v2I

vx2
CbSIKgI ;

ð4:1Þ

where S(x, t) and I(x, t) are the densities of susceptible
and infective people at spatial location x at time t,
respectively; b is the transmission rate; g is the death
rate due to infection; and D is the diffusion coefficient
that accounts for the migration and movement of
individuals in space (Shigesada & Kawasaki 1997). In a
series of elegant examples, Murray and co-workers
(Murray et al. 1986; Murray & Seward 1992) and
Shigesada & Kawasaki (1997) used reaction diffusion
equations to model the spread of rabies in red fox hosts
across Europe. Rabies emerged in Eastern Europe
following World War II and spread westward through
the 1980s. The westward expansion of rabies in foxes
has largely been halted through the delivery of a highly
effective oral vaccine (Jackson & Wunner 2002). The
early spread of rabies and the consequences of
emergence events beyond the control region have
been modelled using

vSðx; tÞ
vt

ZDS

v2S

vx2
CðaKbÞSKmSNKbSI ;

vHðx; tÞ
vt

ZDH

v2H

vx2
CbSIKðbCsCmNÞH ;

vI ðx; tÞ
vt

ZDI

v2I

vx2
CsHKðbCbI CmNÞI ;

ð4:2Þ

where the new term H(x, t) corresponds to the density
of exposed but not yet infectious foxes; N(x, t) is the
total population density; and the new parameters are
aZbirth rate of foxes, bZdeath rate, bIZdeath rate of
infectives, mZintraspecific competition coefficient and
sZrate of onset of disease (incubation rate).What is the
most interesting for our focus in this paper is the
inclusion of variation in the diffusion coefficients. Each
subclass of the population is indexed with a different
movement pattern. Murray et al. (1986) and Murray &
Seward (1992) treatedDSZDH/DI, i.e. the movement
of infected animals was considered much greater than
the movement of susceptible or incubating foxes. The
movement of individual animals in equation (4.2) is
assumed to occur across a uniform environment and
what heterogeneity that exists in the system is the result
of behavioural variations induced by disease. Murray
et al. (1986) did incorporate heterogeneity into the
landscape by constructing the spatial distribution of red
fox population densities over the southern half of
England (based on field data) and then carried out a
large-scale computer simulation in which equation set
(4.2)was solved in a two-dimensional space representing
England’s topography and geographical distribution of
fox densities. As expected, their model showed differ-
ential rates of rabies expansion associated with the rapid
movement of rabies across high-density areas.
J. R. Soc. Interface (2007)
Direct simulation is not the only method of
incorporating spatial heterogeneity into disease
dynamics on heterogeneous landscapes. Equation set
(4.2) suggests an alternative general method for
incorporating spatial heterogeneity into a reaction–
diffusion framework. Shigesada et al. (1986, 1987)
incorporate habitat heterogeneity within an explicit
Fisher–Skellam model by assuming that the diffusion
rate and population birth rate vary within different
habitat patch types. They consider two patch types
alternating in a one-dimensional spatial arrangement
with the population undergoing dispersal and logistic
growth. Their model corresponds to the population
equation

vNðx; tÞ
vt

ZDðxÞ v
2N

vx2
Cf3ðxÞKmNgN ; ð4:3Þ

and where the diffusion coefficient D(x) and intrinsic
growth rate 3(x) are given by the periodic step functions
defined by

DðxÞZ
d1;

d 2;
3ðxÞZ

31 ðfor x 2m%x!x 2mC1Þ;
32 ðfor x 2mC1%x!x 2mC2Þ;

((

m Z 0;G1;G2;.;

ð4:4Þ
where x0Z0, xiCl iC1 (iZ0,G1,G2,.) and l i is the
width of the ith patch.

Unfortunately, it is very difficult to obtain general
solutions to equation (4.3) when the patch widths, l i , are
arbitrary in value and even more difficult for multiple
(more than 2) different diffusion coefficients. Shigesada&
Kawasaki (1997) present some special cases where
general solutions can be obtained. Nonetheless, for
environments that are highly heterogeneous, other
modelling structures will be more tractable.
4.2. Mixing matrices and optimal control

Many infectious diseases are not uniformly transmitted
among different individuals in the population, but
instead there is a significant variation in transmission
rate within specific subpopulations within the larger
population. For example, transmission rate variation
within different subpopulations of the human popu-
lation is common for many sexually transmitted
diseases; for example, heterogeneous transmission of
HIV often includes subpopulations representing hetero-
sexuals, homosexuals and intravenous drug users
(Heathcote 1996). The majority of these substructured
models employ a ‘mixing matrix’ that characterizes the
heterogeneity within the population and often these
subgroups have (at least implicitly) a geographical
component. Consider a larger population that is
spatially subdivided. We can construct a mixing matrix
such that the transmission rate between any two cells is
a function of both the distance between the two cells
and the environmental characteristics of each cell.

In Asano et al. (in press), we have used this approach
to model the delivery of rabies vaccine to wildlife over a
landscape partitioned into n geographically distributed
subpopulations connected to each other through

http://rsif.royalsocietypublishing.org/


Table 1. Parameter and state variable definitions for the spatially explicit raccoon rabies population dynamics model with
vaccine control.

symbol definition

aij the rate of geographical movement of non-infected ones (susceptible and immune classes)
from subpopulation i to subpopulation j

cij the rate of geographical movement of infected ones from subpopulation i to subpopulation j
bj the rate of transmission in subpopulation i
mS, mI, mR the mortality rate in each class: S, I, R
si the rate of vaccine bait distribution (control)
g the efficacy of vaccination distribution
Si the number of susceptibles in subpopulation i
Ii the number of infected ones in subpopulation i
Ri the number of individuals immune to the disease in subpopulation i
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immigration and emigration (figure 7). Subpopulation i
is divided into three classes: susceptibles, Si; infectives,
Ii; and a removed class, Ri , corresponding to those
individuals that have become immune through vac-
cination. The spatial expansion of rabies is controlled
through the delivery of an oral rabies vaccine (ORV)
distributed in advance of the current wavefront of
expansion (Hanlon & Rupprecht 1998), and we were
particularly interested in modelling the optimal spatial
distribution of ORV under the conditions of an
emergency outbreak situation similar to what has
recently occurred in northeast Ohio in the USA
(Russell et al. 2005). The dynamics of the spatial
ensemble are governed by

dSi

dt
ZKbiSiIiKgsiSi C

Xn
j;jsi

ajiSjK
Xn
j;jsi

ajiSiKmSSi;

dIi
dt

Z biSiIi C
Xn
j;jsi

cjiIjK
Xn
j;jsi

cij IiKmIIi;

dRi

dt
ZgsiSi C

Xn
j;jsi

ajiRjK
Xn
j;jsi

ajiRiKmRRi;

ð4:5Þ
where parameter values are defined as in table 1. There
are two important features of this system pertinent to
our discussion. The first is the structure of the set of
movement parameters aij and cij and the second is
the introduction of a spatially defined control set
UZ{s1, s2, ., sn}. Depending on the habitat charac-
teristics and geographical orientation/configuration of
subpopulations, movement may not be symmetric, i.e.
aij may not be the same as aji , and similarly for cij and
cji. The specific values for movement are assumed to be
inversely proportional to the distance between sub-
populations i and j and are also defined by the
particular pattern of environmental heterogeneity.
For instance, figure 8 shows two examples of possible
spatial configurations of four subpopulations. In
figure 8a, subpopulation 1 is located equidistant from
the other subpopulations 2, 3 and 4. In this case, the
rates of geographical movement are the same across all
subpopulations. In figure 8b, if distances vary, for
example, with the distance between subpopulations
3 and 1 the largest, then the rate a13 is the smallest. In a
similar fashion, if we have subpopulation classes defined
by physical or habitat characteristics, these distinct
J. R. Soc. Interface (2007)
types can have definable effects on the movement rates
that then combine with any distance effects. We used
habitat differences, for instance, to define variation in
local transmission rates in elucidating the effects of
rivers on the spread of rabies (Smith et al. 2002).
However, in that analysis, there was no explicit
incorporation of geographical distance on rates of
movement and transmission across neighbouring
subpopulations.The inclusion of a control set U in the
dynamics of spread opens the possibility for determin-
ing an optimal policy that guides the spatial distri-
bution of control, in this case, the spatial distribution of
the rate of vaccine delivery. An optimal policy might
consist of minimizing the total number of infections
produced during the course of an emergence and the
total cost of the vaccination programme. Such a goal is
expressed by forming the objective functional J(s),
which is appropriately minimized, over space

minimize JðsÞZ
Xn
iZ1

ðT
0
ðIi Casdi Þdt;

where a and d are weight factors in the cost of control.
Asano et al. (in press) examine the general properties
of this control problem and show how one can use
Pontryagin’s Maximum Principle (Pontryagin et al.
1962) to derive the necessary conditions for spatial
optimization in a homogeneous environment where
transmission among subpopulations is simply con-
trolled by geographical distance. However, the tech-
nique should prove easily extendable to situations
requiring the incorporation of physical features of
the landscape.
4.3. Individual-based models and networks

Continued subdivision of the population into smaller
and smaller geographical units ultimately leads to
modelling the fate of individual agents rather than
collections. Ecologists have long recognized that some
aspects of population dynamics will require simulations
at the individual level (Grimm & Railsback 2005). For
example, Donalson & Nisbet (1999) used an agent-
based model to examine the role of local predator–prey
interactions and discrete time and birth processes on
population persistence, both processes not captured by
traditional Lotka–Volterra dynamics. The need for
individual level analysis becomes increasingly apparent

http://rsif.royalsocietypublishing.org/
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removed (Ri) individuals. Removed individuals correspond to
susceptibles that have become immune through the deliver of
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as the landscape becomes increasingly heterogeneous.
For highly variable landscapes, the characteristics of
individuals (such as genotypic susceptibility and
resistance, social memberships, fecundity and survivor-
ship rates, etc.) may become highly idiosyncratic and
this variation may best be captured through explicit
attention to the individual agent. Often this variation
interacts with the physical and geographical structure
of the landscape, for example, when temperature and
soil conditions explicitly select for specific genotypes in
plant populations that may be subject to pathogenic
attack. There are currently two dominant approaches
to modelling at the level of individual agents within
specific spatial contexts.

Individual-based models have been used to simulate
spatial dynamics of some infectious diseases. For
example, Haydon et al. (2006) followed such an
approach to develop spatially explicit vaccination
strategies for a population of the highly endangered
Ethiopian wolf. This population had repeatedly suf-
fered from outbreaks of rabies virus, which had spilled
over from infected domestic dogs in the surrounding
villages. Detailed data on outbreak size as well as on the
sizes and spatial configurations of wolf packs were
available from long-term field studies. These data
permitted the parameterization of a demographically
stochastic SEIR model, distinguishing classes of
susceptible, exposed, infectious and recovered/vac-
cinated individuals. Simulation results yielded spatially
explicit estimates of the reproductive number of rabies
(R0) at the level of individual packs and suggested that
J. R. Soc. Interface (2007)
appropriate temporal and spatial windows over which
vaccination of wolves, even at low coverage, could keep
epidemic sizes to a minimum.

The difficulty (and in no small measure the
intellectual dissatisfaction) associated with individual-
based approaches is their lack of generalization. The
models are, more or less, an engineering approach to
understanding disease phenomena—rich in detail, very
realistic and predictive, but not general. An alternative
to completely individual-based modelling is the new
emerging interest in contact networks and graph-
theoretic models of the disease process (Keeling &
Eames 2005; Meyers et al. 2005, 2006) that capture
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Figure 9. A schematic of a contact network among susceptible
(open circles), infectious (red circles) and recovered/removed
(green circles) distributed over three habitat types. Note that
the contact rates/probabilities are functions of distance
between individuals and habitat type. The wider connections
correspond to higher contact rates. Also, contact rates may
be influenced by the existence of a ‘contact bridge’ across
landscapes, as might occur between habitat A and B.
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Figure 8. Schematic of the rates of geographical movement aij
between subpopulations. (a) Set of movement relations that
corresponds to equidistant subpopulations experiencing equal
rates of movement. (b) Set of movement relations that
corresponds to subpopulations which are variably distant
from each other and where movement between sub-
populations is inversely proportional to distance between
subpopulations. (a) a12Za13Za14; (b) a12Oa14Oa13.

Review. Disease dynamics on heterogeneous landscapes L. A. Real and R. Biek 945

 rsif.royalsocietypublishing.orgDownloaded from 
some features of agent-based approaches, while still
producing general broad theoretical results. Networks
are constructed from a defined set of individuals
(nodes) that can be of different types (say, susceptible,
infected and resistant individuals) but rather than
assumed random mixing (as in the usual SIR model)
are constrained in interactions specified by the set of
connections among the nodes of the graph (figure 9).
The set of connection can be specific to the properties
of the individuals or to their spatial location. Networks
can be both spatially explicit (where the metric
distance between nodes effect contact pattern) and
spatially implicit (where only the overall contact
topology is of interest). The standard features of
traditional SIR dynamics (e.g. basic reproductive
number, herd immunity and velocity of spatial
propagation) can be encapsulated within network
models (Meyers et al. 2005, 2006). However, most of
these models do not consider the landscape charac-
teristics of the environments upon which the contact
network is constructed, though it is possible to do so.
For example, nodes could be characterized not only by
their disease state, but also by the habitat in which
they reside. Also, the strength of connections among
particular pairs of nodes could be affected by the
landscape within which contacts between these indi-
viduals takes place. The inclusion of landscape
heterogeneity into network models is, undoubtedly,
an area for future development within this emerging
approach to disease modelling.
J. R. Soc. Interface (2007)
5. CONCLUSION AND AREAS FOR FUTURE
RESEARCH

The physical landscape clearly influences both the
genetic structure and the spatial dynamics of host–
pathogen interactions. That it does is both a benefit and
a complication. Our ultimate goal in any modelling
activity should be to construct predictive theories of
when and where infectious diseases will occur and how
their dynamics will change under the influence of both
evolutionary and ecological transformations. Aspects of
the physical environment, in many cases, must be
included if we are to make accurate and helpful
predictions. Consequently, the physical environment
is a complication and we must add these complications
to theory. However, from a practical perspective, the
physical environment is often easily measured. Topo-
graphic databases have been constructed for many
regions of the world. Major rivers, mountain ranges,
valleys and vegetation types have been mapped and are
easily accessed. If physical aspects of the environment
are strong drivers in channelling ecological and
evolutionary dynamics, then we can access these
readily available databases to help generate timely
and (one hopes) useful predictions. We exploited this
connection between the physical environment and
underlying population processes in making predictions
about rabies spread in North America. Much of our
early modelling activity was directed at ascertaining
how much of the dynamics of spread could be
encapsulated by simple physical environmental vari-
ables that act as surrogate measures for population
attributes. The population biological properties of
raccoons—for example, population densities, individual
movements and contact rates—are extremely difficult
to measure. However, topographic features already in
analysable form are easily accessed from public, and
often even online, sources. We are optimistic about our

http://rsif.royalsocietypublishing.org/


946 Review. Disease dynamics on heterogeneous landscapes L. A. Real and R. Biek

 rsif.royalsocietypublishing.orgDownloaded from 
ability to substitute environmental measures for
population processes of other infectious diseases since
much of the dynamics of the spread of rabies was
accurately predicted simply using physical landscape
heterogeneities as a surrogate for more complicated
population dynamics approaches. At the same time, we
need to understand how these physical heterogeneities
actually influence population processes that support
their use as surrogate variables.

The literature on spatial population dynamics
abounds with examples where the endogenous, truly
contagious processes (i.e. those processes dependent on
individual dispersal characteristics, social interactions
and contact patterns) may generate spatial aggregates
across the landscape. Less attention has focused on the
exogenous, apparently contagious processes that gen-
erate spatial aggregation through the intervention of
physical heterogeneities in the habitat that essentially
act as a filter on the spatial organization and movement
of individuals across the landscape. We have high-
lighted the importance of the physical characteristics of
the environment in this filtering process since they are
often underappreciated. For example, models of HIV
transmission often incorporate population heterogene-
ities due to social interactions such as occur at shooting
galleries. At the same time, these shooting galleries
often occur at spatial locations dictated by the external
characteristics of the environment (e.g. neglected areas
of the city versus suburbia). As another example, the
environment may determine the location of individuals
of particular genotypes due to selection (e.g. heat
tolerance or resistance to desiccation). Those genotypes
may also exhibit different forms of resistance or
susceptibility to pathogens. So, clusters of resistance
or susceptibility might arise due to the underlying
structure of the environmental landscape. Yet once
established, the pattern of transmission may simply
reflect the dispersal and contact patterns among extant
individuals. Thus, true and apparent (endogenous
versus exogenous) forces may themselves interact and
resulting spatial patterns will invariably be the
consequence of the (often subtle) interactions between
multiple exogenous and endogenous processes many of
which we are only beginning to attend to.

In closing, we suggest a number of research questions
directed at establishing the linkage between environ-
mental heterogeneity and host–pathogen dynamics.
These include the following.

—How does seasonality interact with and influence the
formation of spatial heterogeneities; for example, the
formation of seasonal transmission islands where
hosts gather around seasonally scarce resources
leading to a temporally and spatially restricted
increase in the transmission rate?

—What is the interaction between host–parasite
evolutionary and ecological dynamics and how
should we explicitly combine ecological and genomic
information into population models? What new
methodologies need to be developed to better detect
genetic and ecological interactions across hetero-
geneous landscapes? Despite the increasing ease of
obtaining genetic data, relatively few attempts have
J. R. Soc. Interface (2007)
been made to incorporate this source of information
into spatial disease models, particularly in a
quantitative fashion.

—Most laboratory experimental systems rely on
homogeneous conditions. What are the most appro-
priate laboratory experimental systems to explore
the role of environmental heterogeneity on disease
dynamics and how should such heterogeneous
microcosms be constructed? How could microbial
laboratory systems, in which many relevant ques-
tions in ecology and evolution have already been
successfully addressed (Jessup et al. 2004; Kassen &
Rainey 2004), be exploited in this context? Are there
a specific set of issues that are particularly amenable
to experimental analysis, e.g. in the same manner as
the way in which the evolution of antimicrobial
resistance has been experimentally examined?

—As in the case with rabies where rivers have a
significant effect at the scale of townships but may
disappear at a larger regional scale, how do we
determine within natural environments the appro-
priate scale to assess the impact of physical hetero-
geneities?

—How are the relative contributions of physical
heterogeneities that lead to increased levels of
isolation among subpopulations counterbalanced
by heterogeneities associated with increasing
connectivity on landscapes?

We realize that this list is a partial one. Nonetheless,
answers to any of these questions will require extensive
reformulations of existing theory and the development
of broad research collaborations that will undoubtedly
lead to an increased capacity for predicting the
dynamics of diseases within their real-world contexts.
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